Skip to main content

Projectile motion

Horizontal motion

vx=v0x=v0cosθx=(v0cosθ)t\begin{align*} v_x &= v_{0x} = v_0 \cos\theta \\ x &= (v_0 \cos\theta) t \end{align*}

Vertical motion

vy=v0sinθgty=(v0sinθ)t12gt2\begin{align*} v_y &= v_0 \sin\theta - gt \\ y &= (v_0 \sin\theta)t - \frac{1}{2}gt^2 \end{align*}

Parabolic trajectory of the projectile

y=xtanθx2g2v02cos2θy = x\tan\theta - x^2\frac{g}{2v_0^2\cos^2\theta}

Time to reach max height:

T=v0sinθgT = \frac{v_0\sin\theta}{g}

Total air time:

t=2Tt = 2T

Maximum height:

H=v02sin2θ2gH = \frac{v_0^2\sin^2\theta}{2g}

Horizontal distance:

D=vxt=2v02sinθcosθgD = v_xt = \frac{2v_0^2\sin\theta\cos\theta}{g}

Center of mass

rcm=imiriMrcm=xcmi^+ycmj^+zcmk^\begin{align*} \vec r_{cm} &= \frac{\sum\limits_i m_i \vec r_i}{M} \\ \vec r_{cm} &= x_{cm} \hat i + y_{cm} \hat j + z_{cm} \hat k \\ \end{align*}
  • rcmr_{cm}: position vector of center of mass
  • MM: total mass of all point masses
Center of gravity

If g\vec g is the same at all points on a body, CM = CG and acm=g\vec a_{cm} = \vec g

Center of mass in projectile motion