Skip to main content

Periodic motion

Simple harmonic motion (SHM)

ω=2πf=2πTf=ω2πT=1f=2πω\begin{align*} \omega &= 2\pi f = \frac{2\pi}{T} \\ f &= \frac{\omega}{2\pi} \\ T &= \frac{1}{f} = \frac{2\pi}{\omega} \end{align*}
  • ω\omega: angular frequency (rad/s)
  • ff: frequency (Hz)

General solution

x=Acos(ωt+ϕ)vx=ωAsin(ωt+ϕ)vmax=ωAax=ω2Acos(ωt+ϕ)amax=ω2AA=x02+v02ω2\begin{align*} x &= A\cos(\omega t + \phi) \\ v_x &= -\omega A\sin(\omega t + \phi) \\ v_{max} &= \omega A \\ a_x &= -\omega^2 A\cos(\omega t + \phi) \\ a_{max} &= \omega^2 A \\ A &= \sqrt{x_0^2 + \frac{v_0^2}{\omega^2}} \end{align*}
Phase angle ϕ\phi

If x0>0x_0>0

ϕ=tan1(v0wx0)\phi = \tan^{-1}\left(-\frac{v_0}{wx_0}\right)

If x0<0x_0<0

ϕ=tan1(v0wx0)+π\phi = \tan^{-1}\left(-\frac{v_0}{wx_0}\right)+\pi

It tells the displacement of the particle x0x_0 at t=0t = 0

  • ϕ=0x0=A\phi = 0 \rightarrow x_0 = A
  • ϕ=πx0=A\phi = \pi \rightarrow x_0 = -A
  • ϕ=π2x0=0\phi = \frac{\pi}{2} \rightarrow x_0 = 0

Simple harmonic oscillators

Block-springAngular oscillatorSimple pendulumPhysical pendulum
ω=km\omega = \sqrt{\dfrac{k}{m}}ω=κI\omega = \sqrt{\dfrac{\kappa}{I}}ω=gL\omega = \sqrt{\dfrac{g}{L}}ω=mgdI\omega = \sqrt{\dfrac{mgd}{I}}
kk: spring constantκ\kappa: torsion constantLL: length of the pendulumdd: distance from the pivot to its CG
Block springAngular oscillatorSimple pendulumPhysical pendulum

Conservation of energy in SHM

E=K+U=12mv2+12kx2E=Umax=12kA2\begin{align*} E &= K + U = \frac{1}{2}mv^2 + \frac{1}{2}kx^2 \\ E &= U_{max} = \frac{1}{2}kA^2 \end{align*}

Damped harmonic oscillator

  • bb: damping constant
  • ω\omega': damped angular frequency
x=Ae(b2m)tcos(ωt+ϕ)ω=kmb24m2\begin{align*} x &= Ae^{-\left(\frac{b}{2m}\right)t}\cos(\omega't+\phi) \\ \omega' &= \sqrt{\frac{k}{m} - \frac{b^2}{4m^2}} \end{align*}
info
  • b<2kmb < 2\sqrt{km} : under damping (oscillation dies off)
  • b=2kmb = 2\sqrt{km} : critical damping (no oscillation, return to equilibrium in shortest time)
  • b>2kmb > 2\sqrt{km} : over damping (no oscillation)
Damped harmonic oscillator

Forced harmonic oscillation

  • ωd\omega_d: driving angular frequency
A=Fmax(kmωd2)2+b2ωd2\begin{align*} A = \dfrac{F_{max}}{\sqrt{(k-m\omega_d^2)^2 + b^2\omega_d^2}} \end{align*}
Resonance
  • When ωdω\omega_d \rightarrow \omega (natural angular frequency of an undamped oscillator), AA reaches maximum (resonance peak)
  • Smaller bb (lighter damping) gives a sharper peak
  • If b2kmb \ge 2\sqrt{km} , the peak disappears completely
Forced harmonic oscillation