On this pagePeriodic motion Simple harmonic motion (SHM) ω=2πf=2πTf=ω2πT=1f=2πω\begin{align*} \omega &= 2\pi f = \frac{2\pi}{T} \\ f &= \frac{\omega}{2\pi} \\ T &= \frac{1}{f} = \frac{2\pi}{\omega} \end{align*}ωfT=2πf=T2π=2πω=f1=ω2π ω\omegaω: angular frequency (rad/s) fff: frequency (Hz) General solution x=Acos(ωt+ϕ)vx=−ωAsin(ωt+ϕ)vmax=ωAax=−ω2Acos(ωt+ϕ)amax=ω2AA=x02+v02ω2\begin{align*} x &= A\cos(\omega t + \phi) \\ v_x &= -\omega A\sin(\omega t + \phi) \\ v_{max} &= \omega A \\ a_x &= -\omega^2 A\cos(\omega t + \phi) \\ a_{max} &= \omega^2 A \\ A &= \sqrt{x_0^2 + \frac{v_0^2}{\omega^2}} \end{align*}xvxvmax