Skip to main content

Gravitation

Newton's law of universal gravitation

Fgrav=Gm1m2r2F_{grav} = \frac{Gm_1m_2}{r^2}
  • where r>r1r>r_1 and r>r2r>r_2 (i.e. two bodies outside of each other)
  • G=6.67×1011G = 6.67\times10^{-11} N\cdotm2^2/kg2^2 : gravitational constant

Gravitational PE (away from planet surface)

Ugrav=GMmrU_{grav} = -\frac{GMm}{r}
  • If r=r = \infty, Ugrav=0U_{grav} = 0
  • As Ugrav<0U_{grav} < 0, UgravU_{grav} decreases (more negative) as rr decreases

Shell theorem

Outside a hollow sphere (rRr \ge R)

Fshell=GMmr2Ushell=GMmr\begin{align*} F_{shell} &= \frac{GMm}{r^2} \\ U_{shell} &= -\frac{GMm}{r} \end{align*}

Inside a hollow sphere (r<Rr \lt R)

Fshell=0Ushell=GMmR\begin{align*} F_{shell} &= 0 \\ U_{shell} &= -\frac{GMm}{R} \end{align*}
  • RR: radius of hollow sphere
  • MM: mass of hollow sphere

Gravitational force inside a sphere of uniform density

F=GMmR3rF = \frac{GMm}{R^3}r

Weight

Acceleration due to gravity:

g0=GMR2g_0 = \frac{GM}{R^2}

True weight at the poles:

w0=mg0w_0 = mg_0

Apparent weight at the equator:

w=mg0mv2Rw = mg_0 - \frac{mv^2}{R}
  • MM: mass of the planet
  • RR: radius of the planet

(Minimum) escape speed

If a projectile is launched vertically, ignoring air resistance

When v0 and r12mv2+(GMmR)=0+0vesc=2GMR\begin{align*} \text{When }v&\rightarrow0\text{ and }r\rightarrow\infty \\ \frac{1}{2}mv^2 &+ \left(-\frac{GMm}{R}\right) = 0 + 0\\ \therefore v_{esc} &= \sqrt{\frac{2GM}{R}} \end{align*}

Schwarzschild radius rsr_s :

c=2GMrsrs=2GMc2\begin{align*} c = \sqrt{\frac{2GM}{r_s}} &&\rightarrow&& r_s = \frac{2GM}{c^2} \end{align*}

Satellite circular orbit

mv2r=GMmr2vcirc=GMrT=2πrv=2πr32GMEorbit=U2=GMm2r\begin{align*} \frac{mv^2}{r} &= \frac{GMm}{r^2} \\ \therefore v_{circ} &= \sqrt{\frac{GM}{r}} \\ T &= \frac{2\pi r}{v} = \frac{2\pi r^{\frac{3}{2}}}{\sqrt{GM}} \\ E_{orbit} &= \frac{U}{2} = -\frac{GMm}{2r} \end{align*}

For a larger orbit,

  • Total energy and PE are larger (less negative)
  • But KE is smaller

Kepler's laws of planetary motion

First law: elliptical orbit around the Sun

Equation:x2a2+y2b2=1Foci:±c=a2b2Eccentricity:e=1b2a2Aphelion:rmax=a(1+e)Perihelion:rmin=a(1e)\begin{align*} \text{Equation:} && \frac{x^2}{a^2} &+ \frac{y^2}{b^2} = 1 \\ \text{Foci:} && \pm c &= \sqrt{a^2 - b^2} \\ \text{Eccentricity:} && e &= \sqrt{1 - \frac{b^2}{a^2}} \\ \text{Aphelion:} && r_{max} &= a(1+e) \\ \text{Perihelion:} && r_{min} &= a(1-e) \\ \end{align*}
  • aa: length of semi-major axis
  • bb: length of semi-minor axis
  • Aphelion is the farthest point from Sun
  • Perihelion is the closest point to Sun
Elliptical orbit around the Sun
Second law: constant sector velocity
dAdt=12r2dθdt=12MMvrsinθ=L2M\begin{align*} \frac{dA}{dt} &= \frac{1}{2}r^2\frac{d\theta}{dt} \\ &= \frac{1}{2M}Mvr\sin\theta \\ &= \frac{L}{2M} \end{align*}
  • AA: area swept by the planet in time tt
  • LL: angular momentum of the planet which is constant, ignoring precession

Third law: period of elliptical orbit

T=2πa32GMs\begin{align*} T = \frac{2\pi a^{\frac{3}{2}}}{\sqrt{GM_s}} \end{align*}
  • aa: length of semi-major axis
  • MsM_s: mass of Sun