Skip to main content

Momentum

Linear momentum

SI unit: kg\cdotm/s

p=mvFnet=dpdt\begin{align*} \vec p &= m \vec v \\ \vec F_{net} &= \frac{d\vec p}{dt} \end{align*}

Impulse

SI unit: N\cdots

J=FnetΔt=Δp=t1t2Fnetdt\begin{align*} \vec J &= \vec F_{net} \Delta t = \Delta\vec p \\ &= \int_{t_1}^{t_2}\vec F_{net} dt \end{align*}

Angular Momentum

SI unit: kg\cdotm2^2/s

L=r×pτ=dLdt=r×FL=mvrsinθL=JdL=Iω\begin{align*} \vec L &= \vec r \times\vec p \\ \vec \tau &= \frac{d\vec L}{dt} = \vec r \times\vec F \\ L &= mvr\sin\theta \\ L &= Jd \\ L &= I\omega \end{align*}
  • L=IωL = I\omega is true only if L\vec L is along the rotation axis
  • Directions of ω\vec\omega and L\vec L are the same, defined by the right-hand thumb rule

Collisions

  • Total momentum is conserved
  • Elastic collision: KE and total energy conserved
  • Inelastic collision: KE decreases during collision
  • Completely inelastic collision: Objects stick together and KE decreases greatly during collision

Elastic collision

vA0vB0=(vA1vB1)\begin{align*} v_{A0} - v_{B0} = -(v_{A1} - v_{B1}) \end{align*}
info

Special case: if object B is initially at rest

vA1=(mAmBmA+mB)vA0vB1=(2mAmA+mB)vA0\begin{align*} v_{A1} &= \left(\frac{m_A - m_B}{m_A + m_B}\right) v_{A0} \\ v_{B1} &= \left(\frac{2m_A}{m_A + m_B}\right) v_{A0} \end{align*}