Skip to main content

Potential energy

Conservative force

ΔU=abFdsF=dUdx\begin{align*} \Delta U &= - \int_a^b\vec F\cdot d\vec s \\ F &= -\frac{dU}{dx} \end{align*}

Gravitational PE

Close to Earth's surface:

Ugrav=mghU_{grav} = mgh

Away from Earth's surface:

Ugrav=GMEmrU_{grav} = -\frac{GM_Em}{r}

Elastic PE (Hooke's law)

Fs=kxUe=12kx2\begin{align*} F_s &= -kx \\ U_e &= \frac{1}{2}kx^2 \end{align*}
  • FsF_s: spring restoring force (negative: opposite to the displacement)
  • kk: spring constant

PE-position graph

  • x1,x3x_1, x_3 are points of minima: stable equilibrium
  • x2,x4x_2, x_4 are points of maxima: unstable equilibrium
PE-position graph
force-position graph