Skip to main content

Work and kinetic energy

Kinetic energy

Translational:

Ktr=12mv2K_{tr} = \frac{1}{2}mv^2

Rotational:

Krot=12Iω2K_{rot} = \frac{1}{2}I\omega^2

Work done

Work-energy theorem:

W=ΔE=ΔK+ΔUW = \Delta E = \Delta K + \Delta U

Constant force:

W=Fs=FscosθW = \vec F \cdot \vec s = |F||s|\cos\theta

Varying force:

W=FdxW = \int \vec F \cdot d \vec x

Torque:

W=τdθW = \int \tau d\theta

Power

P=dWdtP = \frac{dW}{dt}

Translational:

P=FvP = \vec F \cdot \vec v

Rotational:

P=τωP = \tau\omega

Motion on a circular path

Example: person on a swing
WT=0WF=0θFcosθdl=mgr(1cosθ)WW=0θmgcos(π2+θ)dl=mgr(1cosθ)Wnet=WT+WF+WW=0\begin{align*} W_T &= 0 \\ W_F &= \int_0^\theta F\cos\theta dl = mgr(1-\cos\theta) \\ W_W &= \int_0^\theta mg\cos(\frac{\pi}{2}+\theta) dl = -mgr(1-\cos\theta) \\ W_{net} &= W_T + W_F + W_W = 0 \end{align*}
  • WTW_T: work done by tension
  • WFW_F: work done by external push
  • WwW_w: work done by weight
  • rr: radius of the curved path
  • ll: displacement of the person
Motion on a curved path